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Abstract

We analyze conditions under which the precision of coupled oscillators can be improved by synchronization. The improve-
ment in precision, defined as the inverse of the coefficient of variation of the periods, depends on how noise is added to the
system. If the magnitude of noise experienced by an oscillator only depends on the state of that oscillator, then the precision
of the group rhythm can be improved to

√
N times the precision of an individual uncoupled oscillator, irrespective of the

form of the coupling function. However, if the magnitude of the noise also depends on the state of other oscillators, as might
be the case for noise caused by synaptic input to neurons, then synchronization may lead to an additional improvement. This
collective enhancement of precision is demonstrated both with a simple phase model and a network of integrate-and-fire
neurons. © 2001 Elsevier Science B.V. All rights reserved.

PACS: 87.10.+e
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1. Introduction

Coupled oscillators are found throughout science and include arrays of Josephson junctions, circadian rhythms,
flashing fireflies, electronic circuits, and neuronal networks [1–12]. In these systems the coupling between different
oscillators may force them to synchronize to a constant frequency. All real systems contain noise, so real oscillators
possess some degree of jitter and thus have limited precision. Intuitively, it seems possible that synchronization
might discipline the oscillators to become more precise [1,13,14]. Researchers have proposed that this phenomenon,
called collective enhancement of precision [1], might explain the remarkable precision of some biological signals
such as circadian rhythms [1,2,15,16] and the electric organ discharge of weakly electric fishes [16–19].

It has been claimed that collective enhancement of precision may be one of the purposes of synchronized neural
activity [20], and evidence that the reliability of neurons improves with increased synaptic efficacy [21] provides
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support for this hypothesis. Furthermore, this type of increase in precision can be used to construct improved
electronic clocks [22,23]. However, to our knowledge, it has never been demonstrated that the precision of coupled
oscillators can be improved beyond

√
N , which results from averaging the frequencies of the uncoupled oscillators.

Thus it is not clear if network effects can lead to an additional increase in precision beyond that obtained by simple
averaging. In this paper we show that the manner in which noise enters the system is critical in determining the
limits of collective enhancement of precision.

We define the precision of a population of oscillators as the jitter in the average spike time of all the oscillators
in the network during one cycle. It is helpful to make a distinction between “intrinsic” noise and “extrinsic” noise.
An oscillator is said to possess intrinsic noise if the resulting fluctuations in its frequency depend only on the state
of that oscillator. If the resulting fluctuations in the frequency also depend on the state of other oscillators then the
noise is called extrinsic. For neurons, ion channel noise is a source of intrinsic noise. Correlated synaptic input to
the neuron would be a source of extrinsic noise because the resulting fluctuation in the frequency of the neuron is a
function of the relative phase between the neuron and the input.

2. Intrinsic noise: phase model

First we determine the effect of collective enhancement of precision in systems of coupled oscillators with intrinsic
noise. A limit cycle oscillator that is weakly coupled to other limit cycle oscillators can be described by a single
phase variable, with interactions between the oscillators expressed as a function of the difference of the phases. For
intrinsically noisy limit cycle oscillators subjected to Gaussian white noise, an additive fluctuating noise term is
included. Consider the network of oscillators pictured in Fig. 1 as an example of a system with intrinsic noise. This
system consists of two layers of oscillators, the top layer, in which each oscillator keeps a constant frequency, and
the bottom layer, where each oscillator is coupled unidirectionally to an oscillator in the top layer and coupled to
all the other oscillators in the bottom layer. Thus, the phases obey an equation of the form,

θ̇i = ωi + Ht(φi − θi) +
N∑
j �=i

H(θj − θi) + ξi, (1)

where θi is the phase of the ith oscillator,ωi the oscillator’s natural frequency, φi = φ0
i ωtt the phase of the oscillator

in the top layer coupled to the ith oscillator in the bottom layer with initial phase φ0
i and frequencyωt ,N the number

of oscillators, H(θj − θi) is a coupling function that describes the interaction between the oscillators in the bottom
layer, Ht(φi − θi) the coupling function connecting oscillators in the bottom layer to the top layer, ξi is an intrinsic
Gaussian white noise term with standard deviation Qin, and the sum is over all other oscillators except the ith one.

Complete derivations of phase equations are available, see [11,24,25], here we only briefly sketch how Eq. (1)
may be derived. A phase variable for each oscillator may be defined such that, for the uncoupled oscillator in
the absence of noise, the asymptotic behavior of the oscillator is only a function of its current phase. Thus, the
original multi-dimensional system that describes the behavior of one oscillator is replaced by a one-dimensional

Fig. 1. A diagram showing the connections in the network of oscillators discussed in the text. The oscillators in the top layer maintain a constant
frequency and connect one-to-one with oscillators in the bottom layer. The oscillators in the bottom layer have all-to-all coupling. The noise is
either added as Gaussian noise to the bottom layer, or inserted as jitter in the input from oscillators in the top layer to oscillators in the bottom
layer. In the latter case the oscillators in the bottom layer are extrinsically noisy because the magnitude of jitter in their frequency depends on
the relative phase of the input from the top layer.
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parameterization along the oscillators’ limit cycle. Then the coupling functions and the magnitude of the noise Qin
are derived perturbatively by assuming the oscillator stays on its unperturbed limit cycle and then averaging the
effect of coupling and noise over one period [11,24,26]. Eq. (1) is only applicable for an oscillator with intrinsic noise
because the magnitude of Qin is obtained by integrating the effect of the noise over one period of the oscillators’
unperturbed trajectory, and that procedure is only valid if the integrand is solely a function of the state of the oscillator.

Phase models have been successfully derived for a number of systems including arrays of Josephson junctions [6]
and biophysically detailed Hodgkin–Huxley neurons [4,5]. Phase equations of the same form can also be derived
for integrate-and-fire neurons [27,28]. Experimental tests of phase models, in the lamprey locomotor central pattern
generator [8] and the mollusk Limax maximus’s olfactory lobe [9], for example, have shown that these models can
have predictive and explanatory power.

We first consider the case Ht(φi − θi) = 0. To determine the behavior of the group rhythm, Ω = (1/N)
∑

i θ̇i , of
the intrinsically noisy oscillators, sum Eq. (1) over all i, and normalize by dividing by N , to obtain

Ω = ω̄ + 1

N

N∑
i

N∑
j �=i

H(θj − θi) + Ξ, (2)

where ω̄ is the mean of the individual ωi’s and Ξ is a Gaussian white noise term, with a standard deviation
σ = Qin/

√
N , that was obtained by summing the ξi’s from Eq. (1). The precision of a population of neurons is

defined as the inverse of the jitter in the average spike time of all the neurons in the network during one cycle. The
spike-time jitter in a single neuron is proportional to the noise current, or equivalently, to the stochastic fluctuations
in the time derivative of the membrane potential. The corresponding quantity in phase models is σ , which is studied
in this section and the next.

If H(θj − θi) is an odd function, then all of the coupling terms cancel and the σ of the group frequency is
reduced to 1/

√
N times the σ of an individual oscillator [29]. If H(θj − θi) is not odd and if in the absence of

noise the sum of the coupling terms can be represented as a constant (this will be the case for any phase-locked
solution), then in the presence of small noise the sum of the coupling terms will fluctuate around a constant value,
assuming the equilibrium is stable. In this case the only way for σ to be less than Qin/

√
N is if the fluctuations

in the coupling term are correlated with the fluctuations in Ξ . However, this is not possible, because at any given
time, t , the value of the coupling term is only a function of the current positions of the oscillators, while the value
of Ξ is uncorrelated from one instant to the next. Therefore, if H(θj − θi) is not odd, the coupling term might lead
to additional fluctuations in Ω , but the σ of the group rhythm cannot be less than Qin/

√
N . Thus, for intrinsically

noisy oscillators, the precision of the group frequency cannot be improved beyond
√
N . The above analysis and

conclusion is also valid for Ht(φi − θi) �= 0. Briefly, this again leads to Eq. (2) with an additional term Ht(φi − θi).
This extra term is also uncorrelated with Ξ .

A more general and formal argument is as follows. Consider a phase model where the dynamical equations can
be written in terms of a Hamiltonian H, such that θ̇i = −∂H/∂θi . A phase-locked solution corresponds to a fixed
point of these equations with θi(t) = ωt + βi , here βi is constant. Without loss of generality we may transform to
a rotating coordinate frame and thus set ω = 0. The stability of the fixed point solution is determined by the matrix
of the second derivatives ofH given byHij ≡ ∂2H/∂θi∂θj . A fixed point is stable when all the eigenvalues λi are
positive. The stochastic dynamics of the small noise-induced deviations, δθi , from the fixed point is given by

δθ̇i = −
∑
j

Hijδθj + ξi . (3)

Since Hij is symmetric, the eigenvectors form an orthogonal matrix Mij, that is, M−1
ij = Mji, and the above

equations in eigencoordinates ηi become,

δη̇i = −λiδηi +
∑
j

Mijξj . (4)
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The solution to stochastic dynamics of a single phase variable, θ̇ = −γ θ + ξ , driven by a noise source ξ with
variance Q2

in is

θ(t) = e−γ t θ(0) +
∫ t

0
ds e−γ (t−s)ξ(s). (5)

We take θ(0) = 0 and assume γ t 
 1,

〈θ(t)2〉 =
∫ t

0
ds
∫ t

0
ds′ e−γ (2t−s−s′)〈ξ(s)ξ(s′)〉 = Q2

in

2γ
(1 − e−2γ t ) ≈ Q2

in

2γ
(6)

and

〈θ̇ (t)2〉 = γ 2〈θ2(t)〉 + 〈ξ2(t)〉 − 2γ 〈ξ(t)θ(t)〉 = γ

2
Q2

in + Q2
inδ(0) − 2γ

∫ ∞

0
h(t − s) e−γ (t−s)〈ξ(s)ξ(t)〉

= γ

2
Q2

in + Q2
inδ(0)−2γ

∫ ∞

0
h(t − s)δ(t − s)=γ

2
Q2

in + Q2
inδ(0) − γQ2

in = Q2
inδ(0) − γ

2
Q2

in. (7)

Here h is the Heaviside function and h(0) was defined as 1
2 . The variance of θ̇ contains an infinite part, Q2

inδ(0),
and a finite part − 1

2γQ
2
in. Thus the part that is measured has a variance Q2

in.
We now apply this result to the full network,〈∑

i

δθ̇i

〉
= 0

and 〈∑
i

δθ̇2
i

〉
=
〈∑

i

∑
j

M−1
ij δηj

∑
k

M−1
ik δηk

〉
= Q2

in

〈∑
ijk

M−1
ij M

−1
ik δjk

〉

=Q2
in

〈∑
ij

M−1
ij Mji

〉
= Q2

in

〈∑
i

δii

〉
= NQ2

in.

Hence, the magnitude of the jitter in the group rhythm Ω is σ = Qin/
√
N .

This analysis explains the
√
N improvement in precision that has been observed in a variety of models of coupled

oscillators such as a phenomenological model of circadian rhythms [30], models of heart-cell clusters [31], coupled
relaxation-oscillators [15,16], and integrate-and-fire neurons, where it was shown that the precision of individual
elements is also enhanced [20]. A

√
N improvement in the precision of coupled oscillators has been observed

experimentally in clusters of cultured heart cells [31] and in an electronic array of coupled ring oscillators [22,23].
Rappel and Karma [20] explained the

√
N improvement in precision observed in integrate-and-fire neurons by

analytically finding the power spectrum of phase oscillators with linear coupling. Our results expand on this by
showing that the manner in which noise enters the system is the critical factor in determining the degree of enhanced
precision. Thus the increased precision of the group rhythm cannot improve beyond

√
N if the noise is intrinsic,

irrespective of the form of the coupling function; however, as we show, if the noise is extrinsic the increase in
precision may be further improved.

In the next two sections we present analytic results and computer simulations of two models were this does
occur. First we consider a simple phase model and then we show that a similar phenomena occurs in pulse-coupled
integrate-and-fire neurons, where a phase description and the small noise approximation are not valid.
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3. Extrinsic noise: phase model, N=2

We again consider the network of oscillators shown in Fig. 1. In this case, however, the noise is added as jitter in
the connection between the top and bottom layers. We use this setup as a simple example of a system with extrinsic
noise, but we expect a similar phenomena to hold in more realistic layered systems with more complicated patterns
of connectivity, such as the mollusk Limax maximus’s olfactory lobe [9] or cortical layers.

We will first examine the behavior of this system using a simple phase model. In this model the phase of the
oscillators in the top layer advance with a constant frequency ωt , and the phase of an oscillator in the bottom layer
is described by the following dynamics:

θ̇i = ωb + Kt sin(φi − θi + ξi,ex) + Kb

N∑
j �=i

sin(θj − θi), (8)

where θi is the phase of the ith oscillator in the bottom layer, φi = φ0
i + ωtt is the phase of the oscillator in the top

layer coupled to the ith oscillator in the bottom layer, φ0
i is the phase at t = 0, ωb is the natural frequency of the

oscillators in the bottom layer, Kt is the strength of coupling between oscillators in the top and bottom layers, Kb
is the coupling between oscillators in the bottom layer. For simplicity the coupling function is chosen to be a sine.
The noise term ξi,ex is Gaussian white noise with standard deviation Qex. The noise term is placed inside the sine
function to model the effect of phasic jitter and is thus extrinsic noise, because the magnitude of the fluctuation in
θ̇i depends on |φi − θi |. In neurons this jitter might be caused by noise in the timing of synaptic transmission or
noise added during propagation of the signal along the axon of the neurons in the top layer. Thus, in the language
of Ref. [32], the input from the top layer to the bottom layer has high “reliability”, but limited “precision”.

In the case that the oscillators in the bottom layer are uncoupled to each other, Kb = 0. Then, if Kt ≥ |�ω| =
|ωt − ωb| (from here on we will assume that this is the case), the oscillators in the top layer entrain the oscillators
in the bottom layer and, at large times, the solution for θi approaches θi = φ0

i +ωtt − arcsin(�ω/Kt). Weak noise
causes the oscillators to jitter around the frequency that they maintained in the absence of noise. The jitter in the
uncoupled oscillators is solved to first order in ξi,ex by substituting the solution for θi obtained in the absence of noise,
so φi − θi = arcsin(�ω/Kt), and then expanding the sine term to first order in ξi,ex around this value. Therefore,
each uncoupled oscillator has a frequency ωt and a jitter with standard deviation QexKt cos(arcsin(�ω/Kt)) =
Qex

√
K2

t − �ω2.
If the oscillators are coupled, thenKb �= 0, and the solution for θi depends onKb. For two synchronized oscillators

in the absence of noise, the phase of the oscillators can be solved analytically. Taking φ0
1 = 0 and φ0

2 = −π , the
phases of the two coupled synchronized oscillators can be solved self-consistently by setting 1

2 (θ̇1 + θ̇2) = ωt and
1
2 (θ̇1 − θ̇2) = 0. Combining this with Eq. (8), in the absence of noise, leads to the solution for the phases of the two
oscillators, θ1 = φ0

1 + ωtt + β1 and θ2 = φ0
2 + ωtt + β2, with

β1 = π

2
+ arcsin(4Kb�ω/K

2
t )

2
− arcsin

(
Kt

2Kb
cos

(
arcsin(4Kb�ω/K

2
t )

2

))
, (9)

β2 = −π

2
+ arcsin(4Kb�ω/K

2
t )

2
+ arcsin

(
Kt

2Kb
cos

(
arcsin(4Kb�ω/K

2
t )

2

))
. (10)

After changing coordinates to the rotating coordinate frame, θi → θ̂i = θi + ωtt + φ0
i , the synchronized solutions

correspond to a fixed point θ̂i = βi . A linear stability analysis shows that this synchronized solution is stable when
β1 and β2 are between π/2 and −π/2. Because we are concerned with the effects of coupling on the behavior of the
oscillators in this uniform frequency regime, it is interesting to note that, for �ω �= 0, if the coupling strength, Kb,
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is too large, Eqs. (9) and (10), do not give real solutions for β1 and β2, and therefore the oscillators can no longer
synchronize with constant frequency ωt .

The magnitude of the jitter in the group rhythm is determined by substituting this solution for θi into Eq. (8),
expanding the sine term to first order in ξi,ex and averaging over i. The resulting jitter has a standard deviation,
σ = 1

2KtQex
√

cos2(β1) + cos2(β2). In the limit Kt/2Kb → 0, this reduces to

σ ≈ KtQex

2

√
1 − cos(2θ̄ ) cos

(
cos(θ̄)

Kt

Kb

)
(11)

with θ̄ = 1
2 arcsin(4�ωKb/K

2
t ). When, in addition, 4Kb�ω/K

2
t → 0,

σ ≈ 1

Kb

(
K2

t Qex

23/2

)
. (12)

This expression becomes exact for �ω = 0. Because the magnitude of the jitter goes like 1/Kb in a certain limit,
values of Kb, �ω, and Kt can be chosen so that changing the coupling Kb to the oscillators in the bottom layer
from a zero to a nonzero value, will result in an arbitrarily large reduction of the standard deviation of the jitter in
the group rhythm, σ . As Kb increases, and if the approximation of large Kt is valid, the oscillators phase lock with
vanishing phase difference, with θi approaching φ1 − π/2 = φ2 + π/2 and the standard deviation σ of the group
rhythm going to zero. Therefore, the standard deviation of the jitter of the group rhythm of these extrinsically noisy
oscillators can be improved when coupling is introduced beyond the improvement obtained by averaging.

Note that the standard deviation, σ , of the group rhythm will go to zero irrespective of the magnitude of the
noise of the uncoupled oscillators, as long as Qex is small enough so that higher-order terms in ξi,ex can be ignored.
However, this improvement in precision with increasing Kb depends on the difference between φ1 and φ2, and if
φ1 = φ2 the precision of the oscillators improves when Kb becomes increasingly negative. This improvement is
not due to a generalized increase in stability. In fact, a stability analysis reveals that the system becomes more and
more sensitive to the effects of intrinsic noise as the coupling increases.

4. Extrinsic noise: phase model, N > 2

We now extend this example of oscillators with extrinsic noise to N > 2. We consider Eq. (8) but with the
oscillators in the bottom layer divided into two groups, the group with the index i odd, 1, 3, . . . , 2n − 1, and the
group with i even, 2, 4, . . . , 2n, with n = 1

2N . An “even oscillator” connects with all odd oscillators, and an “odd
oscillator” connects to all even oscillators. The oscillators in the top layer proceed at a constant rate, φi = ωtt +φ0

i ,
with φ0

i = �φ/2 if i is odd, and equal to −�φ/2 when i is even, where �φ = π . The derivation proceeds in three
steps. First, we substitute an Ansatz solution in the fixed point equation to obtain two equations. Second, we use our
solution for N = 2 oscillators to solve for the jitter in the group rhythm with N > 2. Finally, we check the stability
of this solution by calculating the eigenvalues of the stability matrixHij.

The phase dynamics of the ith oscillator is

θ̇i = ωb + Kt sin(φi − θi + ξi,ex) + Kb

∑
j∗

sin(θj − θi), (13)

here
∑

j∗ is the sum over even oscillators if i is odd, and the sum over odd oscillators if i is even.
Our Ansatz is that all the even phases θi are equal to θe and all the odd ones equal to θo, for ξi,ex = 0, Eq. (13)

then reduces to

θ̇o = ωb + Kt sin(φo − θo) + nKb sin(θe − θo), (14)

θ̇e = ωb + Kt sin(φe − θe) − nKb sin(θe − θo) (15)
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Fig. 2. Precision increased faster than
√
N for extrinsic noise. (a) The network converged from random initial conditions to the fixed point, given

by θo = β1 = π/2 − arcsin(1/NKb) for all the odd phases, and θe = β2 = −π/2 + arcsin(1/NKb) for the even phases. The N = 20 neurons
were divided into 10 even–odd pairs, the trajectory (θo, θe) (solid line) was then plotted from the initial condition (circles) to the fixed point
(open diamond). Here the rotating coordinate frame was used. (b) The fixed point phases θo (top) and θe (bottom) were plotted as a function
of network size N : the analytical result (solid line) and the simulation result (circles). (c) The analytical result (solid line, Qex/(N

3/2Kb)) and
numerical results (circles) for the jitter σ as a function of N . For comparison the optimal result for intrinsic noise, ∼ 1/N1/2, is plotted (dashed
line). (d) Eigenvalues λ of the stability matrix Hij were plotted as a function of N . Analytical results, λ1 = λ2 = 1

2 NKb, λ+ = NKb − 1/NKb,
and λ− = 1/NKb. Eq. (13) were integrated using the Euler method with time step dt = 1 × 10−3, averages were over 105 steps after discarding
a transient of 2 × 104 steps. Parameter values were Qex = 1 × 10−2, Kb = 0.2, Kt = 1, �ω = 0.

which is identical to Eq. (8) for two oscillators with Kb → nKb, hence we can use the solution given in Eqs. (9)
and (10).

We transform to the rotating coordinate frame, θi → θi + φi . For notational simplicity, in the following and in
Fig. 2, θi , θo and θe, will denote the phase in the rotating coordinate frame. Hence, the phase dynamics of the ith
oscillator is

θ̇i = −�ω − Kt sin(θi − ξi,ex) + Kb

∑
j∗

sin(θj − θi − (φ0
j − φ0

i )). (16)

The Hamiltonian (in the absence of noise) determined via θ̇i = −∂H/∂θi is

H = −
∑
i

(−�ωθi + Kt cos(θi)) − Kb

∑
{i,j}

cos(θj − θi + �φ), (17)

here
∑

{i,j} is the sum over all pairs with i odd and j even. Solving the fixed point equations θ̇i = 0, yields θi = β1
for i odd, and θi = β2 for i even. Here β1 and β2 are given by Eqs. (9) and (10) with the substitution Kb → nKb.
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This fixed point is reached from random initial conditions (Fig. 2a). In the presence of sufficiently small noise, the
arguments leading up to Eq. (3) can be repeated to yield,

δθ̇i = −
∑
j

Hijδθj + cos θiξi (18)

and

σ =
√√√√〈( 1

N

∑
i

δθ̇i

)2〉
= QexKt

N

√∑
i

cos2θi = QexKt

N

√
N

2
(cos2β1 + cos2β2). (19)

In the limit NKb�ω/Kt → 0 and Kt/NKb → 0 the standard deviation of the jitter in the group rhythm becomes

σ ≈ K2
t Qex

N3/2Kb
∼ 1

N3/2
. (20)

This result was reproduced using numerical simulations (Fig. 2c). Therefore, with extrinsic noise the precision may
improve as N3/2, which is more rapid than the factor of

√
N obtained with intrinsic noise. It is important to note

that this N3/2 improvement is only valid in a certain parameter regimes and does not hold in the asymptotic limit
(except for �ω = 0). As N increases, the statement NKb�ω/Kt → 0 will eventually cease to be valid and thus
the approximation leading to Eq. (20) will no longer hold. However, Eq. (20) may be valid for an arbitrarily large
finite value of N if the magnitude of Kb, Kt , and �ω are chosen appropriately.

The solution is stable when all the eigenvalues of Hij ≡ (∂2H/∂θi∂θj ) evaluated in the fixed point are positive.
Substituting θi = β1 for i is odd and θi = β2 otherwise, in the second derivative of the Hamiltonian Eq. (17) gives

Hij =




β0 0 0 . . . 0 α . . . . . . . . . α

0 β0 0 . . . 0 α . . . . . . . . . α

0 0 0 . . . β0 α . . . . . . . . . α

α . . . . . . . . . α βe 0 0 . . . 0
α . . . . . . . . . α 0 βe 0 . . . 0

α . . . . . . . . . α 0 0 0 . . . βe



, (21)

where we used the following definitions,

α = −Kb cos(β2 − β1 + �φ), βe = Kt cosβ2 − nα, βo = Kt cosβ1 − nα.

The determinant ofHij − λδij is for N = 2n = 6 (the right-hand side is valid for any positive n value),

det(Hij − λδij) =

∣∣∣∣∣∣∣∣∣∣∣∣

γ0 0 0 0 0 α

−γ0 γ0 0 0 0 0
−2γ0 −γ0 γ0 0 0 0

0 0 α γe 0 0
0 0 0 −γe γe 0
0 0 0 −2γe −γe γe

∣∣∣∣∣∣∣∣∣∣∣∣
= γ n−1

0 γ n−1
e (γeγo − n2α2) (22)

with γe = βe − λ, γo = βo − λ. The eigenvalues are obtained by setting the determinant to zero, λ1 = βe (n − 1
eigenvectors), λ2 = βo (n − 1 eigenvectors),

λ± = 1
2 (βe + βo) ± 1

2

√
(βe + βo)2 − 4(βeβo − n2α2). (23)
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For small enough Kb and N all eigenvalues are positive and the solution is stable. For Kt = 1 and �ω = 0 the
results simplify to, α = −Kb(1 − 2/(NKb)

2), βo = βe = 1
2 NKb, λ1 = λ2 = 1

2 NKb, λ+ = NKb − 1/NKb, and
λ− = 1/NKb. These results are shown in Fig. 2d.

5. Integrate-and-fire neurons

We now demonstrate that the distinction between intrinsic and extrinsic noise is also valid for pulse-coupled
integrate-and-fire (IAF) neurons, in addition to the simple phase models discussed previously. It has been shown
that a

√
N improvement in precision is observed for networks of IAF neurons with intrinsic additive current noise

[20]. However, we will show that IAF neurons with extrinsic noise can have even greater precision than that obtained
by simply averaging uncoupled IAF neurons.

We consider a model network of IAF neurons with the architecture pictured in Fig. 1. A neuron in the bottom
layer has a membrane potential Vi that obeys the equation,

V̇i = I − Vi + Et,i (t) +
N∑
j

Eb,i,j (t), (24)

where I is a constant bias current, Et,i (t) the synaptic current from the top layer to the ith neuron in the bottom
layer, and Eb,i,j (t) the synaptic input from the j th neuron in the bottom layer to neuron i. At the threshold Vi = 1
the neuron produces a spike and then Vi is reset to 0. Eb,i,j (t

′) = gbα
2t ′ e−αt ′ is an alpha function. Where t ′ is the

time since the j th neuron last fired, and gb and α determine the strength and duration of the input. Et,i (t) is a train
of inhibitory delta function pulses that deliver a total current of −gt at times t = nT + ξi. Here T is the period of
oscillation of the neurons in the top layer, ξi is a white noise term with standard deviation Q, and n = 1, 2, 3, . . . .
Thus, as in the phase model used above, the noise is jitter in the arrival of inputs from the top layer to the bottom
layer. For the simulations in this paper I = 1.3, α = 4, gt = 0.7, T = 1.9, and Q = 0.1, unless noted otherwise.
With these parameters the neurons in the bottom layer are phase locked to the neurons in the top layer, if the neurons
in the bottom layer are uncoupled, gb = 0. The qualitative nature of the results is not specific to these parameter
values and remains the same if Et,i (t) is changed to a series of alpha functions or Eb,i,j (t) is changed to a delta
function.

As with the phase model, the noise introduced here is extrinsic because the fluctuations in the interspike intervals
of the neurons in the bottom layer depends on the relative phase between these neurons and the neurons from the
top layer. In this section we first demonstrate the extrinsic nature of the noise by setting gb = 0 to consider the
behavior of one IAF neuron uncoupled from the other neurons in the bottom layer. The isolated neuron in the bottom
layer still receives a series of inhibitory delta function pulses from the top layer. The resulting fluctuations in the
interspike intervals of the IAF neuron in the bottom layer depends on the magnitude of the jitter in the inhibitory
input and on the relative phase between the input and the IAF neuron.

In the absence of noise, Q = 0, there exists a solution to Eq. (24) for a range of driving currents I with the
neuron spiking periodically at time Tn = nT and inhibitory pulses arriving at tn = (n − φ0)T , where n is an
integer [33]. The IAF neuron will asymptotically approach this stable phase-locked solution from an arbitrary initial
condition. This approach to equilibrium can be described by a map F , which we derive in terms of the relative phase
between the inhibitory input and the neurons’ spike time. Given the previous spiking time Tn−1, and the arrival of
the current pulse φn, it is possible to determine the next spike time Tn. Since the next inhibitory input will arrive
at time T after the previous pulse, one can then determine its relative phase as φn+1 = F(φn). The resulting map
is [34]

F(φ) = φ − 1

T
ln

[
1 + gt

I + gt/α0

(
1

α
− 1

α0

)]
. (25)
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Fig. 3. (a) The output jitter of a single IAF neuron in the bottom layer as a function of φ0. The magnitude of the extrinsic noise varies from top
to bottom as Q = 0.1, 0.05, 0.01 and 0.001. The small circles are obtained from numerical simulation of the map with noise, where as the solid
lines are the solution of the linearized dynamics. For a network of N = 10 IAF neurons described by Eq. (24) the relative phase �φ between
the bottom layer and the input from the top layer, and the CV, are both functions of gb. (b) The mean relative phase between the input from the
top layer and the bottom layer, as a function of gb in the absence of noise. (c) CV as a function of gb with Q = 0.01. The increase of CV at high
and low gb (high and low relative phase) is due to skipping.

Here α = e−φT , α0 = e−φ0T , I = I0 + (gt/α0)δ/(1 − δ), I0 = 1/(1 − δ), and δ = e−T . To obtain a given fixed
point φ0 of Eq. (25), one has to inject a specific current value.

Now consider the effect of jitter in the arrival time of the input pulses by making Q nonzero. One can then
determine the resulting jitter in the spike time Tn and the interspike intervals τn = Tn+1 − Tn. An estimate of σ , the
resulting standard deviation in the interspike interval of the IAF neuron, can be obtained by linearizing the map,

σ =
√

χ

2 − χ
Q. (26)

Here 1 − χ is the derivative of the map at the fixed point phase, χ = 1 − (dF/dφ)|φ0 = gt/(Iα0 + gt). The
value of σ is a function of φ0, the equilibrium phase between the input and the IAF neuron, and thus the noise is
indeed extrinsic. The analytical results from Eq. (26) are plotted for various values of Q and compared to computer
simulations in Fig. 3(a). For intermediate values of φ0 there is excellent agreement between the theory and the
simulation. However, as φ0 approaches 0 or 1 the theory significantly underestimates the resulting jitter of the IAF
neuron.

This failure of the theory can be understood by noting that the linearized map will only provide a good estimate
of σ if the IAF neuron spikes only once after each inhibitory input. If Q is large enough, the next inhibitory pulse
can arrive immediately after the previous one, before the IAF neuron can spike. This happens when φ0 is close to
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Fig. 4. We plot the return map φn+1 versus φn obtained from numerical simulation for: (a) Q = 0.01, (b) Q = 0.05 and (c) Q = 0.10. In (d)
we plot the actual time trace, the φn as a function of the cycle number n for the same values of Q as labeled in the figure. For clarity the phases
for Q = 0.01 and 0.05 are offset by 2 and 1, respectively. We take φ0 = 0.1, the other parameters are as described in the text.

one. Similarly, if φ0 is close to zero the IAF neuron can spike twice before the next inhibitory input arrives. In both
cases the phase φn+1 of the new pulse is far from the fixed point value of φ0. Over the next few iterations of the
map it will again approach the fixed point. However, these spike skipping and spike missing events do significantly
increase σ . We illustrate this phenomena in Fig. 4 where we plot the return map, φn+1 versus φn, obtained from
numerical simulations for various values of Q.

If gb ≥ 0 the neurons in the bottom layer are coupled via excitatory pulses, which provide an extra, phasic,
driving current. In this case, the relative phase between the neurons in the bottom layer and the input from the top
layer depends on the strength of the coupling and thus the amount of jitter in the output depends on the strength
of coupling. Fig. 3(b) and (c) show how the relative phase and the amount of jitter changes as gb is varied for a
network with N = 10 neurons in the bottom layer. This is analogous to the behavior of a single IAF neuron shown
in Fig. 3(a). From this graph it can be seen that, for a given number of neurons, a value of gb can be selected to
minimize the amount of jitter.

In a similar fashion, for a given value of gb there is a particular number of neurons that minimizes the amount of
jitter. For example, if for a particular number of neurons in the network, the neurons are phase locked to the input
with φ0 close to zero, adding more neurons to the network will increase φ0 and thus decrease the σ of each IAF
neuron. Therefore, the CV of the group rhythm can be decreased to better than 1/

√
N times the CV of an individual

oscillator. This is depicted in Fig. 5, where the CV is plotted versus the number of neurons in the bottom layer,
with gb = 3 × 10−3. This figure clearly demonstrates an improvement in precision in addition to

√
N . When more

neurons are added the improvement in jitter levels off and for larger network sizes the precision of the group rhythm
may be worse than

√
N times the precision of an uncoupled neuron. However, for any given number of neurons in

the network, Nmax, it is always possible to choose a coupling strength, gb, such that as N increases from 1 to Nmax,
the CV of the network improves by more than 1/

√
N for all N less than Nmax.
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Fig. 5. The CV of the group rhythm of a network of IAF neurons with dynamics described by Eq. (24) as a function of the number of neurons
in the network, N , gb = 3 × 10−3 and other parameter values are as described in the text. The circles are values obtained by solving Eq. (24)
numerically with Euler’s method with a time step of dt = 1 × 10−3. The dashed line is the CV of an uncoupled neuron times 1/

√
N . In this

range, the precision of the group rhythm is better than
√
N times the precision of an uncoupled neuron. As the number of neurons is increased

further, the CV of the neurons stops decreasing with N . When N becomes sufficiently large, the precision becomes worse than
√
N times the

precision of an uncoupled neuron.

6. Conclusion

In summary, we have demonstrated in two model systems that it is possible to enhance the precision of a set
of oscillators beyond

√
N through coupling but only when the sources of noise are extrinsic rather than intrinsic

to the oscillators. The group rhythm of intrinsically noisy oscillators is more precise than an individual uncoupled
oscillator because the fluctuations in the individual oscillators cancel by the law of large numbers. For extrinsically
noisy oscillators, coupling may make the extrinsic noise term have less of an effect, resulting in a group rhythm
with a standard deviation that is even better than that obtained by averaging. It should be borne in mind, however,
that all the results obtained here were for finite N ; it remains to explore whether similar improvements are present
asymptotically for large N [35]. This could occur through reducing the multiplicative constant for 1/

√
N or by

finding circumstances when the falloff is even steeper than 1/
√
N .

Finally, the results obtained here may have biological significance for systems of neurons that need to be precisely
synchronized [16,17]. Intrinsic noise cannot be reduced beyond 1/

√
N , so the only way to achieve high precision is

to use mechanisms that have low intrinsic noise, which appears to be the case for the pacemaker nucleus of weakly
electric fish [18,19]. Synaptic noise is present in many cortical neurons [36] and it may be possible to improve the
precision of their synchronization, such as that found during sleep rhythms [37], since synaptic variability is a form
of extrinsic noise.
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